Copied to
clipboard

?

G = C42.241D10order 320 = 26·5

61st non-split extension by C42 of D10 acting via D10/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.241D10, C4⋊Q820D5, (C4×D5)⋊5Q8, C4.40(Q8×D5), D10.5(C2×Q8), C20.54(C2×Q8), C4⋊C4.219D10, C202Q836C2, (Q8×Dic5)⋊22C2, (C2×Q8).147D10, C4.Dic1042C2, Dic5.34(C2×Q8), (D5×C42).10C2, Dic53Q842C2, C20.136(C4○D4), C4.41(D42D5), C10.48(C22×Q8), (C2×C10).272C24, (C4×C20).213C22, (C2×C20).105C23, D102Q8.14C2, D103Q8.12C2, C4.22(Q82D5), C4⋊Dic5.251C22, (Q8×C10).139C22, C22.293(C23×D5), D10⋊C4.51C22, C56(C23.37C23), (C2×Dic5).143C23, (C4×Dic5).169C22, C10.D4.61C22, (C22×D5).243C23, (C2×Dic10).196C22, C2.31(C2×Q8×D5), (C5×C4⋊Q8)⋊14C2, C4⋊C47D5.14C2, C10.100(C2×C4○D4), C2.64(C2×D42D5), C2.29(C2×Q82D5), (C2×C4×D5).322C22, (C5×C4⋊C4).215C22, (C2×C4).600(C22×D5), SmallGroup(320,1400)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.241D10
C1C5C10C2×C10C22×D5C2×C4×D5D5×C42 — C42.241D10
C5C2×C10 — C42.241D10

Subgroups: 654 in 222 conjugacy classes, 111 normal (33 characteristic)
C1, C2 [×3], C2 [×2], C4 [×6], C4 [×12], C22, C22 [×4], C5, C2×C4 [×3], C2×C4 [×4], C2×C4 [×15], Q8 [×8], C23, D5 [×2], C10 [×3], C42, C42 [×7], C22⋊C4 [×4], C4⋊C4 [×4], C4⋊C4 [×12], C22×C4 [×3], C2×Q8 [×2], C2×Q8 [×2], Dic5 [×2], Dic5 [×6], C20 [×6], C20 [×4], D10 [×2], D10 [×2], C2×C10, C2×C42, C42⋊C2 [×2], C4×Q8 [×4], C22⋊Q8 [×4], C42.C2 [×2], C4⋊Q8, C4⋊Q8, Dic10 [×4], C4×D5 [×4], C4×D5 [×4], C2×Dic5 [×3], C2×Dic5 [×4], C2×C20 [×3], C2×C20 [×4], C5×Q8 [×4], C22×D5, C23.37C23, C4×Dic5 [×3], C4×Dic5 [×4], C10.D4 [×4], C4⋊Dic5 [×8], D10⋊C4 [×4], C4×C20, C5×C4⋊C4 [×4], C2×Dic10 [×2], C2×C4×D5 [×3], Q8×C10 [×2], C202Q8, D5×C42, Dic53Q8 [×2], C4.Dic10 [×2], C4⋊C47D5 [×2], D102Q8 [×2], Q8×Dic5 [×2], D103Q8 [×2], C5×C4⋊Q8, C42.241D10

Quotients:
C1, C2 [×15], C22 [×35], Q8 [×4], C23 [×15], D5, C2×Q8 [×6], C4○D4 [×4], C24, D10 [×7], C22×Q8, C2×C4○D4 [×2], C22×D5 [×7], C23.37C23, D42D5 [×2], Q8×D5 [×2], Q82D5 [×2], C23×D5, C2×D42D5, C2×Q8×D5, C2×Q82D5, C42.241D10

Generators and relations
 G = < a,b,c,d | a4=b4=1, c10=b2, d2=a2b2, ab=ba, cac-1=dad-1=a-1, cbc-1=dbd-1=b-1, dcd-1=a2c9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 65 137 117)(2 118 138 66)(3 67 139 119)(4 120 140 68)(5 69 121 101)(6 102 122 70)(7 71 123 103)(8 104 124 72)(9 73 125 105)(10 106 126 74)(11 75 127 107)(12 108 128 76)(13 77 129 109)(14 110 130 78)(15 79 131 111)(16 112 132 80)(17 61 133 113)(18 114 134 62)(19 63 135 115)(20 116 136 64)(21 152 41 82)(22 83 42 153)(23 154 43 84)(24 85 44 155)(25 156 45 86)(26 87 46 157)(27 158 47 88)(28 89 48 159)(29 160 49 90)(30 91 50 141)(31 142 51 92)(32 93 52 143)(33 144 53 94)(34 95 54 145)(35 146 55 96)(36 97 56 147)(37 148 57 98)(38 99 58 149)(39 150 59 100)(40 81 60 151)
(1 83 11 93)(2 94 12 84)(3 85 13 95)(4 96 14 86)(5 87 15 97)(6 98 16 88)(7 89 17 99)(8 100 18 90)(9 91 19 81)(10 82 20 92)(21 116 31 106)(22 107 32 117)(23 118 33 108)(24 109 34 119)(25 120 35 110)(26 111 36 101)(27 102 37 112)(28 113 38 103)(29 104 39 114)(30 115 40 105)(41 64 51 74)(42 75 52 65)(43 66 53 76)(44 77 54 67)(45 68 55 78)(46 79 56 69)(47 70 57 80)(48 61 58 71)(49 72 59 62)(50 63 60 73)(121 157 131 147)(122 148 132 158)(123 159 133 149)(124 150 134 160)(125 141 135 151)(126 152 136 142)(127 143 137 153)(128 154 138 144)(129 145 139 155)(130 156 140 146)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 10 127 136)(2 135 128 9)(3 8 129 134)(4 133 130 7)(5 6 131 132)(11 20 137 126)(12 125 138 19)(13 18 139 124)(14 123 140 17)(15 16 121 122)(21 42 51 32)(22 31 52 41)(23 60 53 30)(24 29 54 59)(25 58 55 28)(26 27 56 57)(33 50 43 40)(34 39 44 49)(35 48 45 38)(36 37 46 47)(61 78 103 120)(62 119 104 77)(63 76 105 118)(64 117 106 75)(65 74 107 116)(66 115 108 73)(67 72 109 114)(68 113 110 71)(69 70 111 112)(79 80 101 102)(81 94 141 154)(82 153 142 93)(83 92 143 152)(84 151 144 91)(85 90 145 150)(86 149 146 89)(87 88 147 148)(95 100 155 160)(96 159 156 99)(97 98 157 158)

G:=sub<Sym(160)| (1,65,137,117)(2,118,138,66)(3,67,139,119)(4,120,140,68)(5,69,121,101)(6,102,122,70)(7,71,123,103)(8,104,124,72)(9,73,125,105)(10,106,126,74)(11,75,127,107)(12,108,128,76)(13,77,129,109)(14,110,130,78)(15,79,131,111)(16,112,132,80)(17,61,133,113)(18,114,134,62)(19,63,135,115)(20,116,136,64)(21,152,41,82)(22,83,42,153)(23,154,43,84)(24,85,44,155)(25,156,45,86)(26,87,46,157)(27,158,47,88)(28,89,48,159)(29,160,49,90)(30,91,50,141)(31,142,51,92)(32,93,52,143)(33,144,53,94)(34,95,54,145)(35,146,55,96)(36,97,56,147)(37,148,57,98)(38,99,58,149)(39,150,59,100)(40,81,60,151), (1,83,11,93)(2,94,12,84)(3,85,13,95)(4,96,14,86)(5,87,15,97)(6,98,16,88)(7,89,17,99)(8,100,18,90)(9,91,19,81)(10,82,20,92)(21,116,31,106)(22,107,32,117)(23,118,33,108)(24,109,34,119)(25,120,35,110)(26,111,36,101)(27,102,37,112)(28,113,38,103)(29,104,39,114)(30,115,40,105)(41,64,51,74)(42,75,52,65)(43,66,53,76)(44,77,54,67)(45,68,55,78)(46,79,56,69)(47,70,57,80)(48,61,58,71)(49,72,59,62)(50,63,60,73)(121,157,131,147)(122,148,132,158)(123,159,133,149)(124,150,134,160)(125,141,135,151)(126,152,136,142)(127,143,137,153)(128,154,138,144)(129,145,139,155)(130,156,140,146), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,127,136)(2,135,128,9)(3,8,129,134)(4,133,130,7)(5,6,131,132)(11,20,137,126)(12,125,138,19)(13,18,139,124)(14,123,140,17)(15,16,121,122)(21,42,51,32)(22,31,52,41)(23,60,53,30)(24,29,54,59)(25,58,55,28)(26,27,56,57)(33,50,43,40)(34,39,44,49)(35,48,45,38)(36,37,46,47)(61,78,103,120)(62,119,104,77)(63,76,105,118)(64,117,106,75)(65,74,107,116)(66,115,108,73)(67,72,109,114)(68,113,110,71)(69,70,111,112)(79,80,101,102)(81,94,141,154)(82,153,142,93)(83,92,143,152)(84,151,144,91)(85,90,145,150)(86,149,146,89)(87,88,147,148)(95,100,155,160)(96,159,156,99)(97,98,157,158)>;

G:=Group( (1,65,137,117)(2,118,138,66)(3,67,139,119)(4,120,140,68)(5,69,121,101)(6,102,122,70)(7,71,123,103)(8,104,124,72)(9,73,125,105)(10,106,126,74)(11,75,127,107)(12,108,128,76)(13,77,129,109)(14,110,130,78)(15,79,131,111)(16,112,132,80)(17,61,133,113)(18,114,134,62)(19,63,135,115)(20,116,136,64)(21,152,41,82)(22,83,42,153)(23,154,43,84)(24,85,44,155)(25,156,45,86)(26,87,46,157)(27,158,47,88)(28,89,48,159)(29,160,49,90)(30,91,50,141)(31,142,51,92)(32,93,52,143)(33,144,53,94)(34,95,54,145)(35,146,55,96)(36,97,56,147)(37,148,57,98)(38,99,58,149)(39,150,59,100)(40,81,60,151), (1,83,11,93)(2,94,12,84)(3,85,13,95)(4,96,14,86)(5,87,15,97)(6,98,16,88)(7,89,17,99)(8,100,18,90)(9,91,19,81)(10,82,20,92)(21,116,31,106)(22,107,32,117)(23,118,33,108)(24,109,34,119)(25,120,35,110)(26,111,36,101)(27,102,37,112)(28,113,38,103)(29,104,39,114)(30,115,40,105)(41,64,51,74)(42,75,52,65)(43,66,53,76)(44,77,54,67)(45,68,55,78)(46,79,56,69)(47,70,57,80)(48,61,58,71)(49,72,59,62)(50,63,60,73)(121,157,131,147)(122,148,132,158)(123,159,133,149)(124,150,134,160)(125,141,135,151)(126,152,136,142)(127,143,137,153)(128,154,138,144)(129,145,139,155)(130,156,140,146), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,10,127,136)(2,135,128,9)(3,8,129,134)(4,133,130,7)(5,6,131,132)(11,20,137,126)(12,125,138,19)(13,18,139,124)(14,123,140,17)(15,16,121,122)(21,42,51,32)(22,31,52,41)(23,60,53,30)(24,29,54,59)(25,58,55,28)(26,27,56,57)(33,50,43,40)(34,39,44,49)(35,48,45,38)(36,37,46,47)(61,78,103,120)(62,119,104,77)(63,76,105,118)(64,117,106,75)(65,74,107,116)(66,115,108,73)(67,72,109,114)(68,113,110,71)(69,70,111,112)(79,80,101,102)(81,94,141,154)(82,153,142,93)(83,92,143,152)(84,151,144,91)(85,90,145,150)(86,149,146,89)(87,88,147,148)(95,100,155,160)(96,159,156,99)(97,98,157,158) );

G=PermutationGroup([(1,65,137,117),(2,118,138,66),(3,67,139,119),(4,120,140,68),(5,69,121,101),(6,102,122,70),(7,71,123,103),(8,104,124,72),(9,73,125,105),(10,106,126,74),(11,75,127,107),(12,108,128,76),(13,77,129,109),(14,110,130,78),(15,79,131,111),(16,112,132,80),(17,61,133,113),(18,114,134,62),(19,63,135,115),(20,116,136,64),(21,152,41,82),(22,83,42,153),(23,154,43,84),(24,85,44,155),(25,156,45,86),(26,87,46,157),(27,158,47,88),(28,89,48,159),(29,160,49,90),(30,91,50,141),(31,142,51,92),(32,93,52,143),(33,144,53,94),(34,95,54,145),(35,146,55,96),(36,97,56,147),(37,148,57,98),(38,99,58,149),(39,150,59,100),(40,81,60,151)], [(1,83,11,93),(2,94,12,84),(3,85,13,95),(4,96,14,86),(5,87,15,97),(6,98,16,88),(7,89,17,99),(8,100,18,90),(9,91,19,81),(10,82,20,92),(21,116,31,106),(22,107,32,117),(23,118,33,108),(24,109,34,119),(25,120,35,110),(26,111,36,101),(27,102,37,112),(28,113,38,103),(29,104,39,114),(30,115,40,105),(41,64,51,74),(42,75,52,65),(43,66,53,76),(44,77,54,67),(45,68,55,78),(46,79,56,69),(47,70,57,80),(48,61,58,71),(49,72,59,62),(50,63,60,73),(121,157,131,147),(122,148,132,158),(123,159,133,149),(124,150,134,160),(125,141,135,151),(126,152,136,142),(127,143,137,153),(128,154,138,144),(129,145,139,155),(130,156,140,146)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,10,127,136),(2,135,128,9),(3,8,129,134),(4,133,130,7),(5,6,131,132),(11,20,137,126),(12,125,138,19),(13,18,139,124),(14,123,140,17),(15,16,121,122),(21,42,51,32),(22,31,52,41),(23,60,53,30),(24,29,54,59),(25,58,55,28),(26,27,56,57),(33,50,43,40),(34,39,44,49),(35,48,45,38),(36,37,46,47),(61,78,103,120),(62,119,104,77),(63,76,105,118),(64,117,106,75),(65,74,107,116),(66,115,108,73),(67,72,109,114),(68,113,110,71),(69,70,111,112),(79,80,101,102),(81,94,141,154),(82,153,142,93),(83,92,143,152),(84,151,144,91),(85,90,145,150),(86,149,146,89),(87,88,147,148),(95,100,155,160),(96,159,156,99),(97,98,157,158)])

Matrix representation G ⊆ GL6(𝔽41)

900000
0320000
001000
000100
0000320
000009
,
100000
010000
001000
000100
0000320
000009
,
010000
100000
00353500
0064000
000001
0000400
,
0400000
100000
00353500
0040600
0000040
0000400

G:=sub<GL(6,GF(41))| [9,0,0,0,0,0,0,32,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,32,0,0,0,0,0,0,9],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,32,0,0,0,0,0,0,9],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,35,6,0,0,0,0,35,40,0,0,0,0,0,0,0,40,0,0,0,0,1,0],[0,1,0,0,0,0,40,0,0,0,0,0,0,0,35,40,0,0,0,0,35,6,0,0,0,0,0,0,0,40,0,0,0,0,40,0] >;

56 conjugacy classes

class 1 2A2B2C2D2E4A···4F4G4H4I4J4K4L4M4N4O4P4Q4R4S4T4U4V5A5B10A···10F20A···20L20M···20T
order1222224···444444444444444445510···1020···2020···20
size111110102···2444455551010101020202020222···24···48···8

56 irreducible representations

dim1111111111222222444
type++++++++++-++++--+
imageC1C2C2C2C2C2C2C2C2C2Q8D5C4○D4D10D10D10D42D5Q8×D5Q82D5
kernelC42.241D10C202Q8D5×C42Dic53Q8C4.Dic10C4⋊C47D5D102Q8Q8×Dic5D103Q8C5×C4⋊Q8C4×D5C4⋊Q8C20C42C4⋊C4C2×Q8C4C4C4
# reps1112222221428284444

In GAP, Magma, Sage, TeX

C_4^2._{241}D_{10}
% in TeX

G:=Group("C4^2.241D10");
// GroupNames label

G:=SmallGroup(320,1400);
// by ID

G=gap.SmallGroup(320,1400);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,100,1123,570,185,80,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=b^2,d^2=a^2*b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=a^2*c^9>;
// generators/relations

׿
×
𝔽